CHEM 116 – Honors and Majors General and Analytical Chemistry I 3 Exams, 9 Quizzes, 10 Labs, 12 Weeks HWK - 865 points (1245 in course)

| EIII: AVE = 95  | 63%)     | Rang | e: 36 - 146  |       | Class    | s Avera | ges     |
|-----------------|----------|------|--------------|-------|----------|---------|---------|
| EII: $AVE = 10$ | 6 (71%)  |      |              |       | EXAM     | 288     | 64%     |
| EI: AVE = 8     | 57 (58%) |      |              |       | QZ       | 57      | 63%     |
| Q1 6.0          | Q5 6     | 6.6  | Q8           | 6.4   | LAB      | 150     | 75%     |
| Q3 4.2          | Q6 6     | 5.2  | Q9           | 8.3   | HWK      | 102     | 82%     |
| Q4 7.8          | Q7 6     | 5.1  | Q10          | 4.9   |          |         |         |
|                 |          |      |              |       | Course G | rade E  | stimate |
| E1 19.4         | E7 1     | 3.0  | 4-4          | 15.9  | А        | 75%     |         |
| E2 17.3         | SP 1     | 7.7  | E8           | 14.8  | В        | 65%     |         |
| L3 18.4         | L5 1     | 7.9  | 10.5         |       | С        | 50%     |         |
| E5 16.3         |          | cla  | ss average i | 71 2% | D        | 40%     |         |
|                 |          |      |              |       |          |         |         |

#### **Polyprotic Acids and Bases – Intermediate Form**

Consider a diprotic acid

H<sub>2</sub>A(aq) + H<sub>2</sub>O(l) 
$$\iff$$
 H<sub>3</sub>O<sup>+</sup>(aq) + HA<sup>-</sup>(aq) base  
HA<sup>-</sup>(aq) + H<sub>2</sub>O(l)  $\iff$  H<sub>3</sub>O<sup>+</sup>(aq) + A<sup>2-</sup>(aq)

If  $H_2A$  is a weak acid its conjugate base,  $HA^-$  is amphoteric. It can act as an acid (second equation) or as a base (reverse of first reaction). What is the pH of a solution of  $HA^-$  such as NaHA?

Exact Treatment (H pp. 216 - 218) for NaHA

species:  $H_2A$ ,  $HA^-$ ,  $A^{2-}$ ,  $H^+$ ,  $OH^-$ ,  $Na^+ =>$  need 6 equations charge balance:  $[H^+] + [Na^+] = [HA^-] + 2[A^{2-}] + [OH^-]$ 

material balance:  $M_{NaHA} = [Na^+] = [H_2A] + [HA^-] + [A^{2-}]$ 

equilibria: 
$$K_{al} = \frac{[H^+][HA^-]}{[H_2A]}$$
  $K_{a2} = \frac{[H^+][A^{2-}]}{[HA^-]}$   $K_w = [H^+][OH^-]$ 

One can show that

$$[H^+]^2 = \frac{K_{a1}K_{a2}[HA^-] + K_{a1}K_{w}}{K_{a1} + [HA^-]}$$

exact relation

#### **Polyprotic Acids and Bases – Intermediate Form**

$$[H^{+}]^{2} = \frac{K_{a1}K_{a2}[HA^{-}] + K_{a1}K_{w}}{K_{a1} + [HA^{-}]}$$
1. when the major species is HA<sup>-</sup> => [HA-] = M<sub>HA</sub>. (F<sub>HA</sub>.)  

$$\approx \frac{K_{a1}K_{a2}M_{NaHA} + K_{a1}K_{w}}{K_{a1} + M_{NaHA}} = \frac{K_{a1}(K_{a2}M_{NaHA} + K_{w})}{K_{a1} + M_{NaHA}}$$
2. often  $K_{w} \ll K_{a2}M_{NaHA}$   

$$\approx \frac{K_{a1}K_{a2}M_{NaHA}}{K_{a1} + M_{NaHA}}$$
3. and  $K_{a1} \ll M_{NaHA}$  this often needs to be checked  

$$\approx \frac{K_{a1}K_{a2}M_{NaHA}}{M_{NaHA}} = K_{a1}K_{a2}$$
or  

$$pH = \frac{1}{2}(pK_{a1} + pK_{a2})$$

#### **Polyprotic Acids and Bases – Predominant Species**

$$pH = pK_{a} + \log_{10} \frac{[B]}{[A]}$$

$$\xrightarrow{More}_{acidic} pH \xrightarrow{More}_{basic}$$

$$Predominant form H_{3}A H_{2}A^{-} HA^{2-} A^{3-}$$

$$\xrightarrow{\uparrow} pK_{1} pK_{2} fK_{3} pH = \frac{1}{2}(pK_{1} + pK_{2}) pH = \frac{1}{2}(pK_{2} + pK_{3})$$

$$[H_{3}A] = [HA^{2-}] [H_{2}A^{-}] = [A^{3-}]$$

$$H_{3}PO_{4} 2.148 7.197 12.374$$

#### **REVIEW FROM FRIDAY**

#### Fractional Composition Diagrams, $\alpha$ versus pH



# **Titrations**

H Ch 11

#### FIND EQUIVALENCE POINT FIRST

#### **CORRECT MOLARITY AS TITRANT IS ADDED**

- **11-1 Strong Acid/Base**
- **11-2 Weak Acid with Strong Base**
- 11-3 Weak Base with Strong Acid
- **11-4 Polyprotic Titrations**

no quiz next week

homework for week 14,15 due dates next Wednesday and Friday

lab notebooks due next Wednesday in discussion

#### **Acid-Base Titrations**

"Learn to recognize buffers! They lurk in every corner of acid-base chemistry."

#### **Acid-Base Titrations**

Solution of a base of known concentration is added to an acid of unknown concentration (or acid of known concentration added to a base of unknown concentration)

titrant

titration curve

equivalence point

half-equivalence point

pH > 7 titrating weak acid

pH = 7 titrating strong acid or base

pH < 7 titrating weak base

endpoint

# **Acid-Base Titrations - Strong**

strong acid or strong base titration overview

classic Arrhenius neutralization reaction characterized by strong acid (base):

strong base (acid) titrant:

total ionic equation:

net ionic equation (what is *K*?):

titration curve – one inflection point (equivalence point)



**EX 1**. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr.



**EX 1.** Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr.



**EX 1.** Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr.

EQ PT:  $n_{H+} = (MV)_{H+} = n_{OH-} = (MV)_{OH-} => V_e = V_{H+} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ 



**EX 1.** Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr.

EQ PT:  $n_{H+} = (MV)_{H+} = n_{OH-} = (MV)_{OH-} => V_e = V_{H+} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ 

a) before any acid is added strong base



**EX 1.** Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr.

EQ PT:  $n_{H+} = (MV)_{H+} = n_{OH-} = (MV)_{OH-} => V_e = V_{H+} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ 

a) before any acid is added strong base

pH = 13.9956 + log (0.02000) = 12.2966 => **12.297** 



**EX 1.** Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr.

EQ PT:  $n_{H+} = (MV)_{H+} = n_{OH-} = (MV)_{OH-} => V_e = V_{H+} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ 

a) before any acid is added strong base

pH = 13.9956 + log (0.02000) = 12.2966 => **12.297** 

b) when 3.00 mL of HBr is added excess OH-



**EX 1.** Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr.

EQ PT:  $n_{H+} = (MV)_{H+} = n_{OH-} = (MV)_{OH-} => V_e = V_{H+} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ 

a) before any acid is added strong base

pH = 13.9956 + log (0.02000) = 12.2966 => **12.297** 

b) when 3.00 mL of HBr is added excess OH-

pH = 13.9956 + log {[ 50(0.02) - 3(0.1) ] / 53} = 12.116



**EX 1.** Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr.

EQ PT:  $n_{H+} = (MV)_{H+} = n_{OH-} = (MV)_{OH-} => V_e = V_{H+} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ 

a) before any acid is added strong base

pH = 13.9956 + log (0.02000) = 12.2966 => **12.297** 

- b) when 3.00 mL of HBr is added excess OHpH =  $13.9956 + \log \{ [50(0.02) - 3(0.1) ] / 53 \} = 12.116$
- c) at the equivalence point  $[H^+] = [OH^-]$



**EX 1.** Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr.

EQ PT:  $n_{H+} = (MV)_{H+} = n_{OH-} = (MV)_{OH-} => V_e = V_{H+} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ 

a) before any acid is added strong base

pH = 13.9956 + log (0.02000) = 12.2966 => **12.297** 

- b) when 3.00 mL of HBr is added excess OHpH = 13.9956 + log {[ 50(0.02) - 3(0.1) ] / **53**} = **12.116**
- c) at the equivalence point  $[H^+] = [OH^-]$

 $K_{\rm w} = [{\rm H}^+]^2 => [{\rm H}^+] = \sqrt{K_{\rm w}} => p{\rm H} = \frac{1}{2} pK_{\rm w} = 13.9956/2 = 6.998$ 



**EX 1.** Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr.

EQ PT:  $n_{H+} = (MV)_{H+} = n_{OH-} = (MV)_{OH-} => V_e = V_{H+} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ 

a) before any acid is added strong base

pH = 13.9956 + log (0.02000) = 12.2966 => **12.297** 

- b) when 3.00 mL of HBr is added excess OHpH = 13.9956 + log {[ 50(0.02) - 3(0.1) ] / **53**} = **12.116**
- c) at the equivalence point  $[H^+] = [OH^-]$

 $K_{\rm w} = [{\rm H}^+]^2 \Longrightarrow [{\rm H}^+] = \sqrt{K_{\rm w}} \Longrightarrow p{\rm H} = \frac{1}{2} pK_{\rm w} = 13.9956/2 = 6.998$ 

d) when 10.50 mL of HBr is added  $excess H^+$ 



**EX 1.** Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr.

EQ PT:  $n_{H+} = (MV)_{H+} = n_{OH-} = (MV)_{OH-} => V_e = V_{H+} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ 

a) before any acid is added strong base

pH = 13.9956 + log (0.02000) = 12.2966 => **12.297** 

- b) when 3.00 mL of HBr is added excess OHpH = 13.9956 + log {[ 50(0.02) - 3(0.1) ] / **53**} = **12.116**
- c) at the equivalence point  $[H^+] = [OH^-]$

 $K_{\rm w} = [{\rm H}^+]^2 \Longrightarrow [{\rm H}^+] = \sqrt{K_{\rm w}} \Longrightarrow p{\rm H} = \frac{1}{2} pK_{\rm w} = 13.9956/2 = 6.998$ 

d) when 10.50 mL of HBr is added  $excess H^+$ 

pH = -log {[ (10.5)(0.1) - 50(0.02)] / 60.5} = 3.0827 => 3.083



**EX 2.** 50.00 mL 0.02000 M MES [2-(N-morpholino)ethanesulfonic acid, pKa = 6.27] titrated with 0.1000 M NaOH.







**EX 2.** 50.00 mL 0.02000 M MES [2-(*N*-morpholino)ethanesulfonic acid, pKa = 6.27] titrated with 0.1000 M NaOH. 12 EQ PT:  $n_{OH_{-}} = (MV)_{OH_{-}} = n_{H_{+}} = (MV)_{H_{+}} => V_e = V_{OH_{-}} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ a) before any base is added weak acid:  $K = x^2/(F-x)$ 11 10  $K_a = 10^{-6.27} = x^2 / (0.02 - x) \Longrightarrow [H^+] = 1.04 \times 10^{-4} \Longrightarrow pH = 3.98$ 9 H 8 Чd 7 6 5 4 3 2 4 0



**EX 2.** 50.00 mL 0.02000 M MES [2-(*N*-morpholino)ethanesulfonic acid, pKa = 6.27] titrated with 0.1000 M NaOH. EQ PT:  $n_{OH_{-}} = (MV)_{OH_{-}} = n_{H_{+}} = (MV)_{H_{+}} => V_e = V_{OH_{-}} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ a) before any base is added weak acid:  $K = x^2/(F-x)$  $K_a = 10^{-6.27} = x^2 / (0.02 - x) => [H^+] = 1.04 \times 10^{-4} => pH = 3.98$ b) when 3.00 mL of NaOH is added buffer,  $pH = pK_a + \log [A^-]/[HA]$ 



**EX 2.** 50.00 mL 0.02000 M MES [2-(*N*-morpholino)ethanesulfonic acid, pKa = 6.27] titrated with 0.1000 M NaOH. EQ PT:  $n_{OH-} = (MV)_{OH-} = n_{H+} = (MV)_{H+} => V_e = V_{OH-} = (50)(0.02)/0.1 = 10.00 mL$ a) before any base is added weak acid:  $K = x^2/(F-x)$  $K_a = 10^{-6.27} = x^2 / (0.02 - x) => [H^+] = 1.04 \times 10^{-4} => pH = 3.98$ b) when 3.00 mL of NaOH is added buffer,  $pH = pK_a + \log [A^-]/[HA]$  $pH = 6.27 + \log \{3(0.1) / [50(0.02) - 3(0.1)]\} = 5.90$ 



**EX 2.** 50.00 mL 0.02000 M MES [2-(*N*-morpholino)ethanesulfonic acid, pKa = 6.27] titrated with 0.1000 M NaOH. EQ PT:  $n_{OH_{-}} = (MV)_{OH_{-}} = n_{H_{+}} = (MV)_{H_{+}} => V_e = V_{OH_{-}} = (50)(0.02)/0.1 = 10.00 mL$ a) before any base is added weak acid:  $K = x^2/(F-x)$  $K_a = 10^{-6.27} = x^2 / (0.02 - x) => [H^+] = 1.04 \times 10^{-4} => pH = 3.98$ b) when 3.00 mL of NaOH is added buffer,  $pH = pK_a + \log [A^-]/[HA]$  $pH = 6.27 + \log \{3(0.1) / [50(0.02) - 3(0.1)]\} = 5.90$ 

c) at the equivalence point  $[OH^-] = [HA] \rightarrow A^-$ , weak base:  $K = x^2/(F-x)$ 



**EX 2.** 50.00 mL 0.02000 M MES [2-(*N*-morpholino)ethanesulfonic acid, pKa = 6.27] titrated with 0.1000 M NaOH. EQ PT:  $n_{OH-} = (MV)_{OH-} = n_{H+} = (MV)_{H+} => V_e = V_{OH-} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ a) before any base is added weak acid:  $K = x^2/(F-x)$  $K_a = 10^{-6.27} = x^2 / (0.02 - x) \Longrightarrow [H^+] = 1.04 \times 10^{-4} \Longrightarrow pH = 3.98$ b) when 3.00 mL of NaOH is added buffer,  $pH = pK_a + \log [A^-]/[HA]$  $pH = 6.27 + \log \{3(0.1) / [50(0.02) - 3(0.1)]\} = 5.90$ c) at the equivalence point  $[OH^-] = [HA] \rightarrow A^-$ , weak base:  $K = x^2/(F-x)$  $K_{\rm b} = K_{\rm w}/K_{\rm a} = x^2/[0.02(50/60) - x], [OH^-] = 1.76 \times 10^{-5}, pH = 9.25$ 



**EX 2.** 50.00 mL 0.02000 M MES [2-(*N*-morpholino)ethanesulfonic acid, pKa = 6.27] titrated with 0.1000 M NaOH. EQ PT:  $n_{OH-} = (MV)_{OH-} = n_{H+} = (MV)_{H+} => V_e = V_{OH-} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ a) before any base is added weak acid:  $K = x^2/(F-x)$  $K_a = 10^{-6.27} = x^2 / (0.02 - x) \Longrightarrow [H^+] = 1.04 \times 10^{-4} \Longrightarrow pH = 3.98$ b) when 3.00 mL of NaOH is added buffer,  $pH = pK_a + \log [A^-]/[HA]$  $pH = 6.27 + \log \{3(0.1) / [50(0.02) - 3(0.1)]\} = 5.90$ c) at the equivalence point  $[OH^-] = [HA] \rightarrow A^-$ , weak base:  $K = x^2/(F-x)$  $K_{\rm b} = K_{\rm w}/K_{\rm a} = x^2/[0.02(50/60) - x], [OH^-] = 1.76 \times 10^{-5}, pH = 9.25$ d) when 10.10 mL of NaOH is added excess OH-



**EX 2.** 50.00 mL 0.02000 M MES [2-(*N*-morpholino)ethanesulfonic acid, pKa = 6.27] titrated with 0.1000 M NaOH. EQ PT:  $n_{OH-} = (MV)_{OH-} = n_{H+} = (MV)_{H+} => V_e = V_{OH-} = (50)(0.02)/0.1 = 10.00 \text{ mL}$ a) before any base is added weak acid:  $K = x^2/(F-x)$  $K_a = 10^{-6.27} = x^2 / (0.02 - x) \Longrightarrow [H^+] = 1.04 \times 10^{-4} \Longrightarrow pH = 3.98$ b) when 3.00 mL of NaOH is added buffer,  $pH = pK_a + \log [A^-]/[HA]$  $pH = 6.27 + \log \{3(0.1) / [50(0.02) - 3(0.1)]\} = 5.90$ c) at the equivalence point  $[OH^-] = [HA] \rightarrow A^-$ , weak base:  $K = x^2/(F-x)$  $K_{\rm b} = K_{\rm w}/K_{\rm a} = x^2/[0.02(50/60) - x], [OH^-] = 1.76 \times 10^{-5}, pH = 9.25$ d) when 10.10 mL of NaOH is added excess OH $pH = 13.9956 + log \{ [(10.1)(0.1) - 50(0.02)] / 60.1 \} = 10.22$ 



## **Acid-Base Titrations - Weak**

weak acid (base) titrated with strong base (acid): weak acid (base):

strong base (acid) titrant:

total ionic equation:

net ionic equation (what is *K*?):

titration curve - two inflection points

half-equivalence point (perfect 1/1 buffer)

equivalence point sol'n identical to conjugate base

(acid) dissolved in water)



#### **Polyprotic Titrations (Mostly Treated as a Buffer)**

$$H_3A \rightarrow H_2A^- \rightarrow HA^{2-} \rightarrow A^{3-}$$



# Levelling Effect

| Acid             | Formula                                          | Conjugate Base                            |            | Ka               | pK,    |
|------------------|--------------------------------------------------|-------------------------------------------|------------|------------------|--------|
| Hydriodic        | HI                                               | 1                                         | ny         | 1011             | ≈ -11  |
| Hydrobromic      | HBr                                              | Br <sup></sup>                            | -          | 10 <sup>9</sup>  | ≈ -9   |
| Perchloric       | HCIO <sub>4</sub>                                | ClO <sub>4</sub>                          | =          | 107              | ≈ -7   |
| Hydrochloric     | HCI                                              | CI-                                       | =          | 107              | ≈ -7   |
| Chloric          | HCIO <sub>3</sub>                                | ClO <sub>3</sub>                          | -          | 10 <sup>3</sup>  | ≈ -3   |
| Sulfuric (1)     | H <sub>2</sub> SO <sub>4</sub>                   | HSO <sub>4</sub>                          | =          | 10 <sup>2</sup>  | ≈ -2   |
| Nitric           | HNO3                                             | NO <sub>3</sub>                           | <b>R</b> 4 | 20               | ≈ -1.3 |
| Hydronium ion    | $H_3O^+$                                         | H <sub>2</sub> O                          |            | 1                | 0.0    |
| Urea acidium ion | (NH <sub>2</sub> )CONH <sup>+</sup> <sub>3</sub> | (NH <sub>2</sub> ) <sub>2</sub> CO (urea) | 6.6        | $\times 10^{-1}$ | 0.18   |
| Iodic            | HIO3                                             | $IO_3^-$                                  | 1.6        | $\times 10^{-1}$ | 0.80   |
| Oxalic (1)       | $H_2C_2O_4$                                      | $HC_2O_4^-$                               | 5.9        | $\times 10^{-2}$ | 1.23   |
| Sulfurous (1)    | H <sub>2</sub> SO <sub>3</sub>                   | HSO <sub>3</sub>                          | 1.5        | $\times 10^{-2}$ | 1.82   |
| Sulfuric (2)     | $HSO_4^-$                                        | $SO_{4}^{2-}$                             | 1.2        | $\times 10^{-2}$ | 1.92   |
| Chlorous         | HClO <sub>2</sub>                                | ClO <sub>2</sub>                          | 1.1        | $\times 10^{-2}$ | 1.96   |

| Sulfurous (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $HSO_3^-$                                    | SO <sub>3</sub> <sup>2-</sup>   | $1.0 \times 10^{-7}$  | 7.00  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|-----------------------|-------|
| Arsenic (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H <sub>2</sub> AsO <sub>4</sub> <sup></sup>  | HAsO <sub>4</sub> <sup>2-</sup> | $9.3 \times 10^{-8}$  | 7.03  |
| Hydrosulfuric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H <sub>2</sub> S                             | HS <sup>-</sup>                 | $9.1 \times 10^{-8}$  | 7.04  |
| Phosphoric (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $H_2PO_4^-$                                  | HPO <sub>4</sub> <sup>2-</sup>  | $6.2 \times 10^{-8}$  | 7.21  |
| Hypochlorous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HCIO                                         | ClO-                            | $3.0 \times 10^{-8}$  | 7.52  |
| Hydrocyanic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HCN                                          | CN <sup>-</sup>                 | $6.2 \times 10^{-10}$ | 9.21  |
| Ammonium ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NH <sup>+</sup>                              | NH,                             | $5.6 \times 10^{-10}$ | 9.25  |
| Carbonic (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HCO <sub>3</sub>                             | CO3-                            | $4.8 \times 10^{-11}$ | 10.32 |
| Methylammonium ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH <sub>3</sub> NH <sub>3</sub> <sup>+</sup> | CH <sub>3</sub> NH <sub>2</sub> | $2.3 \times 10^{-11}$ | 10.64 |
| Arsenic (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HAsO <sub>4</sub> <sup>2-</sup>              | AsO <sub>4</sub> <sup>3-</sup>  | $3.0 \times 10^{-12}$ | 11.52 |
| Hydrogen peroxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H <sub>2</sub> O <sub>2</sub>                | $HO_2^-$                        | $2.4 \times 10^{-12}$ | 11.62 |
| Phosphoric (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $HPO_4^{2-}$                                 | PO4                             | $2.2 \times 10^{-13}$ | 12.66 |
| Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H-O                                          | OH-                             | $1.0 \times 10^{-14}$ | 14.00 |
| Hydrogen sulfide ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HS-                                          | S <sup>2-</sup>                 | $1.0 \times 10^{-19}$ | 19.00 |
| Hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H <sub>2</sub>                               | H-                              | $1.0 \times 10^{-33}$ | 33.00 |
| Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NH <sub>3</sub>                              | NH <sub>2</sub>                 | $1.0 \times 10^{-38}$ | 38.00 |
| Hydroxide ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OH-                                          | O <sup>2-</sup>                 |                       |       |
| CALIFORNIA CONTRACTOR CONTRACTOR OF CONTRACTOR OF CONTRACTOR CONTRACT |                                              |                                 |                       |       |

acids stronger than H<sub>3</sub>O<sup>+</sup>

conjugate bases stronger than OH<sup>-</sup>