CHEM 116 - Honors and Majors General and Analytical Chemistry I

3 Exams, 9 Quizzes, 10 Labs, 12 Weeks HWK - 865 points (1245 in course)

EIII: AVE $=95$ (63\%) Range: 36-146
EII: AVE = 106 (71\%)
El: \quad AVE $=87$ (58\%)

Q1	6.0	Q5	6.6	Q8	6.4
Q3	4.2	Q6	6.2	Q9	8.3
Q4	7.8	Q7	6.1	Q10	4.9

E1	19.4
E2	17.3
L3	18.4

Q10 4.9

4-4 15.9
E8 14.8
10.5
class average 71.2\%

Class Averages

EXAM	288	64%
QZ	57	63%
LAB	150	75%
HWK	102	82%

Course Grade Estimate
A 75\%
B 65%
C 50%
D 40%

Polyprotic Acids and Bases - Intermediate Form

Consider a diprotic acid

$$
\mathrm{H}_{2} \mathrm{~A}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HA}^{-}(a q) \text { base }
$$

$$
\text { acid } \mathrm{HA}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{2-}(a q)
$$

If $\mathrm{H}_{2} \mathrm{~A}$ is a weak acid its conjugate base, HA^{-}is amphoteric. It can act as an acid (second equation) or as a base (reverse of first reaction). What is the pH of a solution of HA^{-}such as NaHA?
Exact Treatment (H pp. 216-218) for NaHA
species: $\mathrm{H}_{2} \mathrm{~A}, \mathrm{HA}^{-}, \mathrm{A}^{2-}, \mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{Na}^{+}=>$need 6 equations
charge balance: $\left[\mathrm{H}^{+}\right]+\left[\mathrm{Na}^{+}\right]=\left[\mathrm{HA}^{-}\right]+2\left[\mathrm{~A}^{2-}\right]+\left[\mathrm{OH}^{-}\right]$
material balance: $\mathrm{M}_{\mathrm{NaHA}}=\left[\mathrm{Na}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{HA}^{-}\right]+\left[\mathrm{A}^{2-}\right]$
equilibria: $\quad K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]} \quad K_{\mathrm{a} 2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{2-}\right]}{\left[\mathrm{HA}^{-}\right]} \quad K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
One can show that

$$
\left[\mathrm{H}^{+}\right]^{2}=\frac{K_{\mathrm{a} 1} K_{\mathrm{a} 2}\left[\mathrm{HA}^{-}\right]+K_{\mathrm{a} 1} K_{\mathrm{w}}}{K_{\mathrm{a} 1}+\left[\mathrm{HA}^{-}\right]}
$$

Polyprotic Acids and Bases - Intermediate Form

$$
\left[\mathrm{H}^{+}\right]^{2}=\frac{K_{\mathrm{a} 1} K_{\mathrm{a} 2}\left[\mathrm{HA}^{-}\right]+K_{\mathrm{a} 1} K_{\mathrm{w}}}{K_{\mathrm{a} 1}+\left[\mathrm{HA}^{-}\right]}
$$

1. when the major species is $\mathrm{HA}^{-}=>\left[\mathrm{HA}^{-}\right]=\mathrm{M}_{\text {HA- }}\left(\mathrm{F}_{\text {HA- }}\right)$

$$
\approx \frac{K_{\mathrm{a} 1} K_{\mathrm{a} 2} \mathrm{M}_{\mathrm{NaHA}}+K_{\mathrm{a} 1} K_{\mathrm{w}}}{K_{\mathrm{a} 1}+\mathrm{M}_{\mathrm{NaHA}}}-\frac{K_{\mathrm{a} 1}\left(K_{\mathrm{a} 2} \mathrm{M}_{\mathrm{NaHA}}+K_{\mathrm{w}}\right)}{K_{\mathrm{a} 1}+\mathrm{M}_{\mathrm{NaHA}}}
$$

2. often $K_{\mathrm{w}} \ll K_{\mathrm{a} 2} \mathrm{M}_{\mathrm{NaHA}}$

$$
\approx \frac{K_{\mathrm{a} 1} K_{\mathrm{a} 2} \mathrm{M}_{\mathrm{NaHA}}}{K_{\mathrm{a} 1}+\mathrm{M}_{\mathrm{NaHA}}}
$$

3. and $K_{\mathrm{al} 1} \ll \mathrm{M}_{\mathrm{NaHA}}$ this often needs to be checked

$$
\approx \frac{K_{\mathrm{a} 1} K_{\mathrm{a} 2} \mathrm{M}_{\mathrm{NaHA}}}{\mathrm{M}_{\mathrm{NaHA}}}=K_{\mathrm{a} 1} K_{\mathrm{a} 2}
$$

or

$$
\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{n} 2}\right)
$$

Polyprotic Acids and Bases - Predominant Species

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]}
$$

Fractional Composition Diagrams, α versus pH

monoprotic acid, HA

diprotic acid, $\mathrm{H}_{2} \mathrm{~A}$

FIND EQUIVALENCE POINT FIRST

CORRECT MOLARITY AS TITRANT IS ADDED

11-1 Strong Acid/Base

11-2 Weak Acid with Strong Base
11-3 Weak Base with Strong Acid
11-4 Polyprotic Titrations
no quiz next week
homework for week 14,15
due dates next Wednesday and Friday
lab notebooks due next Wednesday in discussion

Acid-Base Titrations

"Learn to recognize buffers! They lurk in every corner of acid-base chemistry."

Acid-Base Titrations

Solution of a base of known concentration is added to an acid of unknown concentration (or acid of known concentration added to a base of unknown concentration)
titrant
titration curve
equivalence point half-equivalence point
$\mathrm{pH}>7$ titrating weak acid
$\mathrm{pH}=7$ titrating strong acid or base
$\mathrm{pH}<7$ titrating weak base
endpoint

Acid-Base Titrations - Strong

strong acid or strong base titration overview
classic Arrhenius neutralization reaction characterized by strong acid (base):
strong base (acid) titrant:
total ionic equation:
net ionic equation (what is K ?):
titration curve - one inflection point (equivalence point)

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .

Excess $\mathbf{O H}^{-}$	Excess \mathbf{H}^{+}

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .
$\mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}, \quad \mathrm{pK}_{\mathrm{w}}=$ $-\log \left(1.01 \times 10^{-14}\right)=13.9956$

Excess $\mathbf{O H}^{-}$	Excess \mathbf{H}^{+}

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .

EQ PT: $n_{\mathrm{H}_{+}}=(\mathrm{MV})_{\mathrm{H}_{+}}=\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{H}+}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}, \quad \mathrm{pK}_{\mathrm{w}}=$ $-\log \left(1.01 \times 10^{-14}\right)=13.9956$

Excess $\mathbf{O H}^{-}$	Excess \mathbf{H}^{+}

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .
EQ PT: $n_{\mathrm{H}_{+}}=(\mathrm{MV})_{\mathrm{H}_{+}}=\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{H+}}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any acid is added strong base
$\mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}, \quad \mathrm{pK}_{\mathrm{w}}=$ $-\log \left(1.01 \times 10^{-14}\right)=13.9956$

Excess OH^{-}	Excess \mathbf{H}^{+}

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .
EQ PT: $n_{\mathrm{H}_{+}}=(\mathrm{MV})_{\mathrm{H}_{+}}=\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{H+}}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any acid is added strong base

$$
\mathrm{pH}=13.9956+\log (0.02000)=12.2966=>12.297
$$

$\mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}, \quad \mathrm{pK}_{\mathrm{w}}=$ $-\log \left(1.01 \times 10^{-14}\right)=13.9956$

Excess OH^{-}	Excess \mathbf{H}^{+}

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .

EQ PT: $n_{\mathrm{H}_{+}}=(\mathrm{MV})_{\mathrm{H}_{+}}=\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{H+}}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any acid is added strong base

$$
\mathrm{pH}=13.9956+\log (0.02000)=12.2966=>12.297
$$

b) when 3.00 mL of HBr is added excess OH^{-}
$\mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}, \quad \mathrm{pK}_{\mathrm{w}}=$ $-\log \left(1.01 \times 10^{-14}\right)=13.9956$

Excess OH^{-}	Excess \mathbf{H}^{+}

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .

EQ PT: $n_{\mathrm{H}_{+}}=(\mathrm{MV})_{\mathrm{H}_{+}}=\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{H+}}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any acid is added strong base

$$
\mathrm{pH}=13.9956+\log (0.02000)=12.2966=>12.297
$$

b) when 3.00 mL of HBr is added excess OH^{-}

$$
\mathrm{pH}=13.9956+\log \{[50(0.02)-3(0.1)] / 53\}=12.116
$$

$\mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}, \quad \mathrm{p} K_{\mathrm{w}}=$ $-\log \left(1.01 \times 10^{-14}\right)=13.9956$

Excess OH^{-}	Excess \mathbf{H}^{+}

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .

EQ PT: $n_{\mathrm{H}_{+}}=(\mathrm{MV})_{\mathrm{H}_{+}}=\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{H+}}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any acid is added strong base

$$
\mathrm{pH}=13.9956+\log (0.02000)=12.2966=>12.297
$$

b) when 3.00 mL of HBr is added excess OH^{-}

$$
\mathrm{pH}=13.9956+\log \{[50(0.02)-3(0.1)] / 53\}=12.116
$$

c) at the equivalence point $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}, \quad \mathrm{p} K_{\mathrm{w}}=$ $-\log \left(1.01 \times 10^{-14}\right)=13.9956$

Excess $\mathbf{O H}^{-}$	Excess \mathbf{H}^{+}

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .

EQ PT: $n_{\mathrm{H}_{+}}=(\mathrm{MV})_{\mathrm{H}_{+}}=\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{H+}}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any acid is added strong base

$$
\mathrm{pH}=13.9956+\log (0.02000)=12.2966=>12.297
$$

b) when 3.00 mL of HBr is added excess OH^{-}

$$
\mathrm{pH}=13.9956+\log \{[50(0.02)-3(0.1)] / 53\}=12.116
$$

c) at the equivalence point $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

$$
K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]^{2}=>\left[\mathrm{H}^{+}\right]=\sqrt{ } K_{\mathrm{w}}=>\mathrm{pH}=1 / 2 \mathrm{p} K_{\mathrm{w}}=13.9956 / 2=6.998
$$

$\mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}, \quad \mathrm{p} K_{\mathrm{w}}=$
$-\log \left(1.01 \times 10^{-14}\right)=13.9956$

Excess OH^{-}	Excess \mathbf{H}^{+}

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .

EQ PT: $n_{\mathrm{H}_{+}}=(\mathrm{MV})_{\mathrm{H}_{+}}=\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{H+}}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any acid is added strong base

$$
\mathrm{pH}=13.9956+\log (0.02000)=12.2966=>12.297
$$

b) when 3.00 mL of HBr is added excess OH^{-}

$$
\mathrm{pH}=13.9956+\log \{[50(0.02)-3(0.1)] / 53\}=12.116
$$

c) at the equivalence point $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

$$
K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]^{2}=>\left[\mathrm{H}^{+}\right]=\sqrt{ } K_{\mathrm{w}}=>\mathrm{pH}=1 / 2 \mathrm{p} K_{\mathrm{w}}=13.9956 / 2=6.998
$$

d) when 10.50 mL of HBr is added excess H^{+}
$\mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}, \quad \mathrm{p} K_{\mathrm{w}}=$
$-\log \left(1.01 \times 10^{-14}\right)=13.9956$

Excess OH^{-}	Excess \mathbf{H}^{+}

Strong Base Titrations

EX 1. Determine the pH for titration of 50.00 mL of 0.02000 M KOH with 0.1000 M HBr .

EQ PT: $n_{\mathrm{H}_{+}}=(\mathrm{MV})_{\mathrm{H}_{+}}=\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{H+}}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any acid is added strong base

$$
\mathrm{pH}=13.9956+\log (0.02000)=12.2966=>12.297
$$

b) when 3.00 mL of HBr is added excess OH^{-}

$$
\mathrm{pH}=13.9956+\log \{[50(0.02)-3(0.1)] / 53\}=12.116
$$

c) at the equivalence point $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

$$
K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]^{2}=>\left[\mathrm{H}^{+}\right]=\sqrt{ } K_{\mathrm{w}}=>\mathrm{pH}=1 / 2 \mathrm{p} K_{\mathrm{w}}=13.9956 / 2=6.998
$$

d) when 10.50 mL of HBr is added excess H^{+}

$$
\mathrm{pH}=-\log \{[(10.5)(0.1)-50(0.02)] / 60.5\}=3.0827=>3.083
$$

$\mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}, \quad \mathrm{p} K_{\mathrm{w}}=$ $-\log \left(1.01 \times 10^{-14}\right)=13.9956$

Excess OH^{-}	Excess \mathbf{H}^{+}

Weak Acid Titrations

EX 2. 50.00 mL 0.02000 M MES [2-(N-morpholino)ethanesulfonic acid, pKa = 6.27] titrated with 0.1000 M NaOH .

Weak Acid Titrations

EX 2. 50.00 mL 0.02000 M MES [2-(N-morpholino)ethanesulfonic acid, $\mathrm{pKa}=6.27$] titrated with 0.1000 M NaOH .
EQ PT: $\mathrm{n}_{\mathrm{OH}-}=(\mathrm{MV})_{\mathrm{OH}-}=\mathrm{n}_{\mathrm{H+}}=(\mathrm{MV})_{\mathrm{H+}}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{OH}-}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$

Weak Acid Titrations

EX 2. 50.00 mL 0.02000 M MES [2-(N-morpholino)ethanesulfonic acid, $\mathrm{pKa}=6.27$] titrated with 0.1000 M NaOH .
EQ PT: $\mathrm{n}_{\mathrm{OH}-}=(\mathrm{MV})_{\text {OH- }}=\mathrm{n}_{\mathrm{H+}}=(\mathrm{MV})_{\mathrm{H+}}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{OH}-}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any base is added weak acid: $K=x^{2} /(\mathrm{F}-x)$

Weak Acid Titrations

EX 2. 50.00 mL 0.02000 M MES [2-(N-morpholino)ethanesulfonic acid, $\mathrm{pKa}=6.27$] titrated with 0.1000 M NaOH .
EQ PT: $\mathrm{n}_{\mathrm{OH}-}=(\mathrm{MV})_{\text {OH- }}=\mathrm{n}_{\mathrm{H+}}=(\mathrm{MV})_{\mathrm{H+}}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{OH}-}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any base is added weak acid: $K=x^{2} /(\mathrm{F}-x)$

$$
K_{\mathrm{a}}=10^{-6.27}=x^{2} /(0.02-x)=>\left[\mathrm{H}^{+}\right]=1.04 \times 10^{-4}=>\mathrm{pH}=3.98
$$

Weak Acid Titrations

EX 2. 50.00 mL 0.02000 M MES [2-(N-morpholino)ethanesulfonic acid, $\mathrm{pKa}=6.27$] titrated with 0.1000 M NaOH .
EQ PT: $\mathrm{n}_{\text {ОН- }}=(\mathrm{MV})_{\text {OH- }}=\mathrm{n}_{\mathrm{H+}}=(\mathrm{MV})_{\mathrm{H}+}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\text {OH- }}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any base is added weak acid: $K=x^{2} /(\mathrm{F}-x)$

$$
K_{\mathrm{a}}=10^{-6.27}=x^{2} /(0.02-x)=>\left[\mathrm{H}^{+}\right]=1.04 \times 10^{-4}=>\mathrm{pH}=3.98
$$

b) when 3.00 mL of NaOH is added buffer, $\left.\mathrm{pH}=p K_{\mathrm{a}}+\log [\mathrm{A}]\right][\mathrm{HA}]$

Weak Acid Titrations

EX 2. 50.00 mL 0.02000 M MES [2-(N-morpholino)ethanesulfonic acid, $\mathrm{pKa}=6.27$] titrated with 0.1000 M NaOH .
EQ PT: $\mathrm{n}_{\mathrm{OH}-}=(\mathrm{MV})_{\text {OH- }}=\mathrm{n}_{\mathrm{H+}}=(\mathrm{MV})_{\mathrm{H+}}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{OH}-}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any base is added weak acid: $K=x^{2} /(\mathrm{F}-x)$

$$
K_{\mathrm{a}}=10^{-6.27}=x^{2} /(0.02-x)=>\left[\mathrm{H}^{+}\right]=1.04 \times 10^{-4}=>\mathrm{pH}=3.98
$$

b) when 3.00 mL of NaOH is added buffer, $\mathrm{pH}=\mathrm{p} \mathrm{K}_{\mathrm{a}}+\log [\mathrm{A}][\mathrm{HA}]$

$$
\mathrm{pH}=6.27+\log \{3(0.1) /[50(0.02)-3(0.1)]\}=5.90
$$

Weak Acid Titrations

EX 2. 50.00 mL 0.02000 M MES [2-(N-morpholino)ethanesulfonic acid, $\mathrm{pKa}=6.27$] titrated with 0.1000 M NaOH .
EQ PT: $\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=\mathrm{n}_{\mathrm{H+}}=(\mathrm{MV})_{\mathrm{H+}}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\text {OH- }}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any base is added weak acid: $K=x^{2} /(\mathrm{F}-x)$

$$
K_{\mathrm{a}}=10^{-6.27}=x^{2} /(0.02-x)=>\left[\mathrm{H}^{+}\right]=1.04 \times 10^{-4}=>\mathrm{pH}=3.98
$$

b) when 3.00 mL of NaOH is added buffer, $\mathrm{pH}=\mathrm{p} \mathrm{K}_{\mathrm{a}}+\log [\mathrm{A}][\mathrm{HA}]$

$$
\mathrm{pH}=6.27+\log \{3(0.1) /[50(0.02)-3(0.1)]\}=5.90
$$

c) at the equivalence point $\left[\mathrm{OH}^{-}\right]=[\mathrm{HA}] \rightarrow \mathrm{A}^{-}$, weak base: $K=x^{2} /(\mathrm{F}-x)$

Weak Acid Titrations

EX 2. 50.00 mL 0.02000 M MES [2-(N-morpholino)ethanesulfonic acid, $\mathrm{pKa}=6.27$] titrated with 0.1000 M NaOH .
EQ PT: $\mathrm{n}_{\text {он- }}=(\mathrm{MV})_{\text {он- }}=\mathrm{n}_{\mathrm{H+}}=(\mathrm{MV})_{\mathrm{H+}}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\text {ОН- }}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any base is added weak acid: $K=x^{2} /(F-x)$

$$
K_{\mathrm{a}}=10^{-6.27}=x^{2} /(0.02-x)=>\left[\mathrm{H}^{+}\right]=1.04 \times 10^{-4}=>\mathrm{pH}=3.98
$$

b) when 3.00 mL of NaOH is added buffer, $\mathrm{pH}=\mathrm{p} \mathrm{K}_{\mathrm{a}}+\log [\mathrm{A}][\mathrm{HA}]$

$$
\mathrm{pH}=6.27+\log \{3(0.1) /[50(0.02)-3(0.1)]\}=5.90
$$

c) at the equivalence point $\left[\mathrm{OH}^{-}\right]=[H A] \rightarrow \mathrm{A}^{-}$, weak base: $K=x^{2} /(\mathrm{F}-x)$

$$
K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=x^{2} /[0.02(50 / 60)-x],\left[\mathrm{OH}^{-}\right]=1.76 \times 10^{-5}, \mathrm{pH}=9.25
$$

Weak Acid Titrations

EX 2. 50.00 mL 0.02000 M MES [2-(N-morpholino)ethanesulfonic acid, $\mathrm{pKa}=6.27$] titrated with 0.1000 M NaOH .
EQ PT: $\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=\mathrm{n}_{\mathrm{H+}}=(\mathrm{MV})_{\mathrm{H+}}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\text {OH- }}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any base is added weak acid: $K=x^{2} /(F-x)$

$$
K_{\mathrm{a}}=10^{-6.27}=x^{2} /(0.02-x)=>\left[\mathrm{H}^{+}\right]=1.04 \times 10^{-4}=>\mathrm{pH}=3.98
$$

b) when 3.00 mL of NaOH is added buffer, $\mathrm{pH}=\mathrm{p} \mathrm{K}_{\mathrm{a}}+\log [\mathrm{A}][\mathrm{HA}]$

$$
\mathrm{pH}=6.27+\log \{3(0.1) /[50(0.02)-3(0.1)]\}=5.90
$$

c) at the equivalence point $\left[\mathrm{OH}^{-}\right]=[H A] \rightarrow \mathrm{A}^{-}$, weak base: $K=x^{2} /(\mathrm{F}-x)$

$$
K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=x^{2} /[0.02(50 / 60)-x],\left[\mathrm{OH}^{-}\right]=1.76 \times 10^{-5}, \mathrm{pH}=9.25
$$

d) when 10.10 mL of NaOH is added excess OH^{-}

Weak Acid Titrations

EX 2. 50.00 mL 0.02000 M MES [2-(N-morpholino)ethanesulfonic acid, $\mathrm{pKa}=6.27$] titrated with 0.1000 M NaOH .
EQ PT: $\mathrm{n}_{\text {OH- }}=(\mathrm{MV})_{\text {OH- }}=\mathrm{n}_{\mathrm{H+}}=(\mathrm{MV})_{\mathrm{H+}}=>\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\text {OH- }}=(50)(0.02) / 0.1=10.00 \mathrm{~mL}$
a) before any base is added weak acid: $K=x^{2} /(F-x)$

$$
K_{\mathrm{a}}=10^{-6.27}=x^{2} /(0.02-x)=>\left[\mathrm{H}^{+}\right]=1.04 \times 10^{-4}=>\mathrm{pH}=3.98
$$

b) when 3.00 mL of NaOH is added buffer, $\mathrm{pH}=\mathrm{p} \mathrm{K}_{\mathrm{a}}+\log [\mathrm{A}][\mathrm{HA}]$

$$
\mathrm{pH}=6.27+\log \{3(0.1) /[50(0.02)-3(0.1)]\}=5.90
$$

c) at the equivalence point $\left[\mathrm{OH}^{-}\right]=[H A] \rightarrow \mathrm{A}^{-}$, weak base: $K=x^{2} /(\mathrm{F}-x)$

$$
K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=x^{2} /[0.02(50 / 60)-x],\left[\mathrm{OH}^{-}\right]=1.76 \times 10^{-5}, \mathrm{pH}=9.25
$$

d) when 10.10 mL of NaOH is added excess OH^{-}

$$
\mathrm{pH}=13.9956+\log \{[(10.1)(0.1)-50(0.02)] / 60.1\}=10.22
$$

Acid-Base Titrations - Weak

weak acid (base) titrated with strong base (acid):
weak acid (base):
strong base (acid) titrant:
total ionic equation:

Polyprotic Titrations (Mostly Treated as a Buffer)

$$
\mathrm{H}_{3} \mathrm{~A} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{~A}^{-} \quad \rightarrow \quad \mathrm{HA}^{2-} \quad \rightarrow \quad \mathrm{A}^{3-}
$$

Levelling Effect

Acidity Constants in Water at $25^{\circ} \mathrm{C}$				
Acid	Formula	Conjugate Base	K	pK ${ }_{\text {a }}$
Hydriodic	HI	I^{-}	$\Rightarrow 10^{11}$	\% -11
Hydrobromic	HBr	Br^{-}	$\Rightarrow 10^{9}$	$\Rightarrow-9$
Perchloric	HClO_{4}	ClO_{4}^{-}	$=10^{7}$	≈-7
Hydrochloric	HCl	Cl^{-}	$=10^{7}$	$=-7$
Chloric	HClO_{3}	ClO_{3}^{-}	$=10^{3}$	$=-3$
Sulfuric (1)	$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}	$=10^{2}$	$=-2$
Nitric	HNO_{3}	NO_{3}^{-}	$\Rightarrow 20$	$=-1.3$
Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	1	0.0
Urea acidium ion	$\left(\mathrm{NH}_{2}\right) \mathrm{CONH}_{3}^{+}$	$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ (urea)	6.6×10^{-1}	0.18
Iodic	HIO_{3}	$1 \mathrm{O}_{3}^{-}$	1.6×10^{-1}	0.80
Oxalic (1)	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$	5.9×10^{-2}	1.23
Sulfurous (1)	$\mathrm{H}_{2} \mathrm{SO}_{3}$	HSO_{3}^{-}	1.5×10^{-2}	1.82
Sulfuric (2)	HSO_{4}^{-}	SO_{4}^{2-}	1.2×10^{-2}	1.92
Chlorous	HClO_{2}	ClO_{2}^{-}	1.1×10^{-2}	1.96

Sulfurous (2)	HSO_{3}^{-}	SO_{3}^{2-}	1.0×10^{-7}	7.00
Arsenic (2)	$\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$	HAsO_{4}^{2-}	9.3×10^{-8}	7.03
Hydrosulfuric	$\mathrm{H}_{2} \mathrm{~S}$	HS^{-}	9.1×10^{-8}	7.04
Phosphoric (2)	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	HPO_{4}^{2-}	6.2×10^{-8}	7.21
Hypochlorous	HClO	ClO^{-}	3.0×10^{-8}	7.52
Hydrocyanic	HCN	CN^{-}	6.2×10^{-10}	9.21
Ammonium ion	NH_{4}^{-}	NH_{3}	5.6×10^{-10}	9.25
Carbonic (2)	HCO_{3}^{-}	CO_{3}^{2-}	4.8×10^{-11}	10.32
Methylammonium ion	$\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	2.3×10^{-11}	10.64
Arsenic (3)	HAsO_{4}^{2-}	AsO_{4}^{3-}	3.0×10^{-12}	11.52
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	HO_{2}^{-}	2.4×10^{-12}	11.62
Phosphoric (3)	HPO_{4}^{2-}	PO_{4}^{1-}	2.2×10^{-13}	12.66
Water	$\mathrm{H}_{2} \mathrm{O}^{-}$	OH^{-}	1.0×10^{-14}	14.00
Hydrogen sulfide ion	HS^{-}	S^{2-}	1.0×10^{-19}	19.00
Hydrogen	H_{2}	H^{-}	1.0×10^{-33}	33.00
Ammonia	NH_{3}	NH_{2}^{-}	1.0×10^{-38}	38.00
Hydroxide ion	OH^{-}	O^{2-}		

acids stronger
than $\mathrm{H}_{3} \mathrm{O}^{+}$
conjugate bases
stronger than OH^{-}

